Does pollution cause cancer in aquatic environments?



by   |  VIEW 125

Does pollution cause cancer in aquatic environments?

Pollution now affects all the environments of the planet at a systemic level. Air, land and water are more or less contaminated depending on the geographical area of ​​the planet, with very serious consequences on ecosystems, flora, fauna and human beings.

The study: Linking pollution and cancer in aquatic environments: A review, published on the Environment international, said: "Due to the interconnectedness of aquatic ecosystems through the highly effective marine and atmospheric transport routes, all aquatic ecosystems are potentially vulnerable to pollution.

Whilst links between pollution and increased mortality of wild animals have now been firmly established, the next steps should be to focus on specific physiological pathways and pathologies that link pollution to wildlife health deterioration.

One of the pollution-induced pathologies that should be at the center of attention in ecological and evolutionary research is cancer, as anthropogenic contamination has resulted in a rapid increase of oncogenic substances in natural habitats.

Whilst wildlife cancer research is an emerging research topic, systematic reviews of the many case studies published over the recent decades are scarce. This research direction would provide a be tter understanding of the physiological mechanisms connecting anthropogenic pollution to oncogenic processes in non-model organisms (reducing the current bias towards human and lab-animal studies in cancer research), and allow us to better predict the vulnerability of different wild populations to oncogenic contamination.

This article combines the information available within the scientific literature about cancer occurrences in aquatic and semi-aquatic species. For the first aim, we use available knowledge from aquatic species to suggest physiological mechanisms that link pollution and cancer, including main metabolic detoxification pathways, oxidative damage effects, infections, and changes to the microbiome.

For the second aim, we determine which types of aquatic animals are more vulnerable to pollution-induced cancer, which types of pollution are mainly associated with cancer in aquatic ecosystems, and which types of cancer pollution causes.

We also discuss the role of migration in exposing aquatic and semi-aquatic animals to different oncogenic pollutants. Finally, we suggest novel research avenues, including experimental approaches, analysis of the effects of pollutant cocktails and long-term chronic exposure to lower levels of pollutants, and the use of already published databases of gene expression levels in animals from differently polluted habitats. "